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Abstract. Green functions are constructed for the Dirac operator in two dimensions 
corresponding to the general solutions of the CP"-' model in two dimensions recently 
obtained and analysed by Din and Zakrzewski. This is achieved both for the basic Dirac 
operator and also for that appropriate to the extended supersymmetric CP"-' model. A 
brief discussion is given of the negative modes for the quadratic fluctuations about the 
classical action. 

The two-dimensional CP"-' model has proved an interesting field theoretic laboratory 
possessing many of the crucial features now considered significant in realistic four- 
dimensional gauge theories, but in a more tractable form. In particular, there is a 
topological charge taking integer values, and the Euclidean action for the model has 
minima for solutions of certain first-order equations, so that the action becomes 
proportional to the topological charge. These solutions correspond closely to the self - 
or anti-self-dual instanton solutions of Euclidean gauge theories. The contribution of 
these CP"-' instantons to the functional integral defining the quantum field theory has 
been evaluated by Berg and Luscher (1980). A necessary part of calculating the 
functional determinants required in this calculation is to find Green functions for the 
relevant operators. 

However, for the CP"-' model with n 3 2 the multi-instanton field configurations 
do not exhaust all possible solutions of the second-order classical equations obtained by 
requiring the action to be stationary. Din and Zakrzewski (1980a, b) have obtained a 
complete set of solutions of the nonlinear equations, with finite action, which, apart 
from the instantons or anti-instantons, are no longer minima but saddle points of the 
action. 

In this paper we exhibit the associated Green functions for the Dirac operator for all 
such solutions, both in the case when the Dirac equation has essentially one component 
and in the supersymmetric version where there are n components. To establish 
notation and set the context for our investigation we briefly recapitulate and slightly 
rephrase some of the results of Din and Zakrzewski (1980a, b). In the CP"-' model the 
basic field Z ( X )  E C" is subject to the constraint fz = lzlz = 1 where the action is defined 
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on equivalence classes z(x) - e""'z(x) (resulting in a U ( I )  gauge invariance) cor- 
responding to elements of CPn-l, 

with D, = 3, - 23,z, x* = x1 It ix2, D,  = $(Dl F i l l z ) .  For suitably regular fields z (x) the 
topological charge 

q=-- d2X Q, Q = -ie,DTD,z = 2(1D+2/* - ID- z I'i 277 ' I  r2 i  

takes integer values. 
The analysis of Din and Zakrzewski (1980a, b) for a general solution 2 of the 

classical equations obtained by requiring I in (1) to be stationary and with I finite 
proceeds by showing that for some I ,  m, D-z, . . . , D!.z and D+z, . . . , DTz are linearly 
independent and span mutually orthogonal 1, m-dimensional vector spaces H;,  H k  
which are also orthogonal to z.  Without loss of generality, it is sufficient to take 
I + m = n - 1 so that for every x there is an orthogonal decomposition 

C" = H ;  + H L  + H ,  ( 3 ,  

where H, is the one-dimensional vector space containing z.  The solution z can then be 
reconstructed by demonstrating the existence of an analytic vector f(x+) E H ;  + H,, 
defined by requiring TDLz = (-l)IwcS'', i = 0, . . . , I ,  D+w = 0, and thenshowing that alf ,  
h = 0,  . . . , 1, are also linearly independent and span H ;  + H, with alfz = wcS . The 
projection operator on the space H ;  is then given by 

hI 

I - 1  

h.i=O 
h, i=O , . . . )  1-1, ( I )  - 7;- 

M h i  -a+fa:f, 14) 

and thus z is recovered in terms of f  by 

z = q121, i = (1 - P ; )  a!J, ( 5 )  

so that w = 121. For any analytic f(x+), z ,  defined according to (4) and ( 5 ) ,  obeys the 
classical equations which are tantamount to 

P;D+z = 0, PLD-z = 0, (6) 

where PL is the corresponding projection operator on HG, PI + PL = P = 1 - zf (an 
equally valid alternative is to construct an analytic vector g(x-) E H L  + H,, the two 
bases for the vector spaces being related by a: f &g = (-l)'&-l,t+,, i + j  s n - 1). The 
vector f is arbitrary up to f + Af for A (x+) a scalar, since this corresponds to a gauge 
change in z ,  so that f may be supposed to be polynomial in x+ with no overall zeros and 
f(x+) = O(x:) for 1x1 + 00. Assuming, as appears to be the generic case, that f, 
d+f, . . . , a',f are still linearly independent for all finite x, then 2, as defined in (S), has no 
zeros and behaves asymptotically for 1x1 + CO like 

i ( x )  = O(X4,), z (x) - e'@'zcc, e" = x+/ /x / ,  (7') 

where q = k-21 .  Such behaviour for z(x)  is as required for the one-point 
compactification of R 2  to S 2  (if 6, = x,/IxI2 we may take z(x) = e1@'zm(6) with z , (o  
regular at 6 = 0). As given in (7), q is identical with the topological charge defined in (2), 
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since, using 0,121 = 0 and D-r = 8-2/121 so long as 1.21 has no singuiarities, 

D+ = /ZIa+(1/12I), D- = (l/p\)a-121. (8) 

Hence Q = 8’ In 121 and with (7) gives an identity in (2). 

equations written in the form 
The Dirac equation in two dimensions can be reduced to two one-component 

D&* = 0. (9) 

Corresponding to the compactification of the point at infinity, the relevant asymptotic 
behaviour for 1x1 -* 00 is 

4*(x)  = O(eieq/x9) (10) 
(with & = l /xF we may take 4*(x) = (l /xr) eieq4z([)). The solutionsof (9), with (lo), 
were given by Din and Zakrzewski (1981). For q 2 0 they are easily seen, from (7) and 
(8), to require 

4+=0, 4; = ga/l;l, a = 1 , .  . . , q, (1 1) 

for { g a }  a set of 4 independent polynomials of degree q - 1 in x+. 

Go(x, x’) which satisfies for q 2 0 
The associated Green function for the operator D- can be constructed in terms of 

(12a) D-Go(x, x’) = S2(x -x’), 

G ~ ( x ,  ~’)6!-  =S2(x -x’)-C 4 i ( x ) A a ( x ’ ) ,  
a 

where 6, = -2, - .Ta,z. A, is unconstrained save for 

The required asymptotic behaviour of Go in x, x’ is, consistent with (7) and (lo), 

Go(x, x’) = O(exp (iOq)/x+, exp (-iO’q)/x;). (14) 

Once Go is found satisfying (12) and (14), the Green function G, orthogonal to the zero 
modes (1 1) is given by 

G, =( l -Z , )Go  (15) 
where 2, is the functional projection operator on the q-dimensional space spanned by 
the zero modes {4:}, 

where p serves to define a scalar product on the zero modes and depends on the metric. 
In a conformally flat space g,, = pS,,, and for the standard metric on S2, with a radius a, 
projected on to R2,  p(x)’” = 2/(1+ I x I Z / a Z ) .  It is then straightforward to see that, as a 
result of (12), G,, satisfies 

D-G, (x, x’) = S2(x -x’), G, (x, x‘)b!. = S’(X -x’) - Z ,  (x, x‘). (17) 

Manifestly the only dependence of G,, on the metric is through the zero mode projector 
Z ,  in (15). Consequently the explicit form of the metric can be avoided in the initial 
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construction of Go. For the operator D+ the Green function can obviously be formed 
from that for D-,  

GP+ ( x ,  x ' )  = -G, ( x ' ,  x ) ,  i 18t 

by virtue of (17) and since jD- = -D+J. For q s 0, in which case 4 = 0 but there are 
then -q di, the construction can be simply modified. 

From (8) Go can be constructed to solve (12a), in the form 

-c- 

1 z ( x ' ) F ( x + ,  x :  
G ~ ( x ,  x ' )  =- 

j i ( x ) l  T ( X  - -x: 

so long as F ( x + ,  x i  ) has no singularities in X +  and satisfies 

(1 - P; ( x ) ) F ( x + ,  x + )  = i ( x  1 

& [ l / ( x +  - x i , ]  = TTr6 (s -x'). 

F ( x - ,  x :  = O ( X T  1, 

(1 -PT(X?)F(X*, x '  1 = O(1), 

since 
2 

To satisfy (14) it is necessary that 

lxi-, 

~ r ' /  -+ a. 

To achieve (226) as well as (20) it is sufficient to take 

(19) 

120) 

121 

( 2 2 a i  

1226) 

The coefficients a, are determined by the requirement (22a).  If f ( x )  = 2;:=,, a,x! ', with 
{a,} linearly independent, then all terms a,x?' ', j = 0, . . . , I -  1, on the RHS of (23) 
must be cancelled. It is an exercise in combinatorics to show that this is possible if 

(k - i)!(k -2/)!l! 
( k  - i - I ) ! ( k  - /)!i!' 

a, = ( - 1 P  i24) 

The result (19) with (23) and (24) simplifies in two extreme cases: for I = 0 ,  y = k ,  
which corresponds to the pure instanton solution with D - z  = 0 ,  F ( x + ,  x'+ \ = f (  Y and 

G ~ ( x ,  x ' ) = ~ ( ~ ' ) z ( x ) / T ( x +  -x'.  1. i 2S)  

also for k = 21, q = 0, F ( x + ,  x'+  = d ; f ( x ' j  and 

To verify that (19) obeys (126) requires 

(27)  

From (23) PL(x)F(x+ ,  x + )  = 0 and the singularity on the RHS of (27) is cancelled so it is a 
linear combination of the zero modes {q5i} given in (11), as necessary. A consistency 
check is given by taking the limit x '  + x in (27), using 

1 D : z ( x ' ) F ( x + ,  1: ) 

1 l i ( x ) l  d x t - x :  1 ' 
d a  ( x ) A , ( x ' )  =- 

,it1 F ( x + ,  x : )  = a ' c f ( x ) + c ( x t  -x:)d+ f ( x ) + O ( ( x +  -.I '+ 

c = q / ( l +  l ) ( k  - I ) ,  128) 
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so that 

From (13) it is then possible to count the number of zero modes, since 

d2x 4 :A, = - d2x \D+z 1' = q 
.n 'I 

which is confirmed by virtue of the result (Din and Zakrzewski 1980b) 

1 - 5 d2x \D+zIZ = -?.- I d2x a2 In det M('+') = (I  + l ) ( k  - I ) .  
77 4.n 

For the supersymmetric version of the Dirac equation 4 is replaced by 4, where $ 
has n components and is orthogonal to z ,  f$  = 0. Corresponding to (9), the actual 
equations for zero modes are 

PD,$' = 0,  P =  1 - z i ,  (32) 

where $* is required to have the same asymptotic behaviour as 4* in (10). The 
solutions were obtained by Din and Zakrzewski and can be expressed in the form 

*a=- -+  m g a  - 9 1.4 a = 1 ,  * . . , n-, *; = IiIp;gb', b = 1 , .  . * , n+, (33) 
1 

for g, ( x + ) ,  g; (x-) linearly independent vectors polynomial in x+, x -  restricted by the 
required asymptotic behaviour for 1x1 +CO. Verification of the result (32) relies on the 
relations 

- 
a-P; = - D - z ~ ,  a+P; = -zD-z, 

- 
a+P", = -D+zi, a-P", = -zD+z. (34) 

The corresponding Green functions can be determined in terms of &(x, x ' ) ,  which 
obeys 

where e,, fb  are restricted solely by 

d x e & i ~  = Sa,, ,  I d2X fb'  = 8bb ' .  (36) 

The Green function for PD- orthogonal to the zero modes is then given in a similar 
fashion to (15 ) ,  

I 2  
c, = ( 1  -Z;)Go(l -&++I, (37) 

PD-G!, = 1 -21t, G,BFP' = 1-2,. (38) 

i,, 2; are the functional projector operators on the spaces spanned by the zero modes 

so that, in analogy with (17), 
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{+:), {+;) constructed exactly as in (16). Of course the Green function for PD,, e,, 
can also be obtained just as in (18). 

To determine Go it is useful to consider the projections onto the spaces Hi, HL. 
Thus if we assume P:fb = 0, which is quite permissible, then from (34) and (3.51, 

P D - P ; ( x ) G o ( x ,  x ’ )  = P L S 2 ( X  - x ’ ) ,  

P ~ ( X ) & , ( X ,  x‘)BLP’ = P : s ~ ( x  - x ’ ) - C  + i ( x ) e , ( x ’ ) ,  

139) 

n 

which has the same form now as (12). It is then not difficult to see, using (34), that we 
can take 

(40) P L ( x ) G o ( x ,  x‘) = P L ( x ) G o ( x ,  x ’ ) P L ( x ’ ) .  

The exhibition of the required form of the zero modes in (39) depends on P & ( x ) z  ( x ’ )  
( x i  - x + ) ,  and we can then show that for x ’ + x  

This allows a check of the counting of the zero modes, as in (30), from (36) 

(42) 
n I n = ~ d 2 x ~ e a + i = - ( c n t + l )  1 d2xlD+z1*=nq+1(1+1) 

rr 

for 4 = k -21, in accord with Din and Zakrzewski (1981). 

satisfy 
It remains to determine P ; ( x ) G o ( x ,  x ‘ ) ,  which from (34) and (35) can be seen to 

PD-P;(X)do(X, X ’ ) = P ; S 2 ( X  - X ’ )  - C f b ( X ) $ ; ( X ’ ) ,  (43n 
h 

P; ( X ) G O ( X ,  X’)&P’ = P ; S 2 ( X  - x ‘ ) .  

A solution for (436) can be given as 

(436) 

with E(x+ ,  x : )  a square matrix acting from H I  0 2  to H ;  ( x ) ,  E(x+, X +)  = 1. The 
specific form of E is fixed by the requirement that GO have an asymptotic behaviour 
exactly as Go in (14). If we let 

E ( x + ,  x : ) a : f ( x ’ )  = h , ( x + ,  x :  1, 

h , ( x + ,  x + )  = a L f c x ) ,  

h , ( x + ,  x i )  = O(X4, ,  x l k - ’ - q ) ,  1x1, IxlI + 02 (46) 

I = 0, . . . , I  - 1, 
(45) 

then it is necessary that 

and of course h , ( x + ,  x : )  has no singularities in x+ ,  x : .  This condition is solved by 
21-1 

h , ( x + ,  x : ,  = 1 c * , A x :  - x + ) ‘ a ! + + Y ( x ) ,  
r = O  
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The result is easily seen to be compatible with (43a), and for x ' +  x 

As before in (42) the zero modes can be counted, 

since as in (30) 

(50 )  
1 1 
- I d2x / D - Z ~ ~ = -  I d2x $In det M'"= l (k - 1  +l). 
lr 4rr 

Once more we find agreement with Din and Zakrzewski (1981). 

q = k, PO = 0 and from (40) we have 
For q = 0, k = 21 it is easily seen that E + 1 in (44), whereas for pure instantons 1 = 0, 

& ( x ,  x ' )  = P(x)Go(x,  x ' )P(x ' )  (51) 

where Go is given as in (25). 
The usefulness of the decomposition (3), which played a crucial role in our analysis, 

can also be seen in other contexts. If we consider fluctuations about a general solution 
of the classical equations zc which makes the action stationary, 

z = z , + h - $ J h I 2 ~ , + 0 ( h 3 ) ,  f ,h =0,  

then 

I = lC+ F + 0 ( h 3 )  

where F is quadratic in h. If we write PLh = h+, P;h = h-, h = h+ + h- and drop the 
subscript c, now 

d2x (&+D+PLD-h++&-D-P;D+h-+ID-z12h;h+ 
(54) - -  

+ ID+zJ2&-h- - K-D-zh;D+z - D-zh-D+zh+). 

To discuss the semiclassical approximation to the functional integral it is necessary to 
know the zero modes and negative modes of the quadratic form F. In this context it is 
perhaps interesting to note that if we set h+ = $a, h- = 4; for any solutions as in (33), 
then F s 0, with F = 0 only if h ,  = AD+z and h- = h*D-z (note that D,z can be 
expressed as in (33)), by elementary application of Schwarz-type inequalities. Since for 
the fluctuations h we may take h = O(eieq) for 1x1 + 00 there are at least, for 1 > 0, 
(nq + 21(1+ 1) + n - 2) linearly independent complex negative modes of F. 
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